New polynomial-time cycle-canceling algorithms for minimum-cost flows

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New polynomial-time cycle-canceling algorithms for minimum-cost flows

The cycle-canceling algorithm is one of the earliest algorithms to solve the minimum cost flow problem. This algorithm maintains a feasible solution x in the network G and proceeds by augmenting flows along negative cost directed cycles in the residual network G(x) and thereby canceling them. For the minimum cost flow problem with integral data, the generic version of the cycle-canceling algori...

متن کامل

Fast Cycle Canceling Algorithms for Minimum Cost Submodular Flow*

This paper presents two fast cycle canceling algorithms for the submodular flow problem. The first uses an assignment problem whose optimal solution identifies most negative node-disjoint cycles in an auxiliary network. Canceling these cycles lexicographically makes it possible to obtain an optimal submodular flow in O(nh log(nC)) time, which almost matches the current fastest weakly polynomial...

متن کامل

Balanced network flows. V. Cycle-canceling algorithms

The present paper continues our study of balanced network flows and general matching problems [6–9]. Beside the techniques presented in these papers, there is a further strategy to obtain maximum balanced flows. This approach is due to Anstee [2] and results in state-of-theart algorithms for capacitated matching problems. In contrast to the balanced augmentation algorithm and the scaling method...

متن کامل

A polynomial cycle canceling algorithm for submodular flows

Submodular ow problems, introduced by Edmonds and Giles 2], generalize network ow problems. Many algorithms for solving network ow problems have been generalized to submodular ow problems (cf. references in Fujishige 4]), e.g. the cycle canceling method of Klein 9]. For network ow problems, the choice of minimum-mean cycles in Goldberg and Tarjan 6], and the choice of minimum-ratio cycles in Wa...

متن کامل

Relaxed Most Negative Cycle and Most Positive Cut Canceling Algorithms for Minimum Cost Flow

This paper presents two new scaling algorithms for the minimum cost network flow problem, one a primal cycle canceling algorithm, the other a dual cut canceling algorithm. Both algorithms scale a relaxed optimality parameter, and create a second, inner relaxation. The primal algorithm uses the inner relaxation to cancel a most negative node-disjoint family of cycles w.r.t. the scaled parameter,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Networks

سال: 2000

ISSN: 0028-3045,1097-0037

DOI: 10.1002/1097-0037(200008)36:1<53::aid-net6>3.0.co;2-y